Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Int J Mol Sci ; 25(6)2024 Mar 07.
Article En | MEDLINE | ID: mdl-38542055

The circular economy, which attempts to decrease agricultural waste while also improving sustainable development through the production of sustainable products from waste and by-products, is currently one of the main objectives of environmental research. Taking this view, this study used a green approach to synthesize two forms of silver nanoparticles: coated silver nanoparticles with olive leaf extract (Ag-olive) and uncoated pure silver nanoparticles (Ag-pure), which were produced by the calcination of Ag-olive at 550 °C. The extract and the fabricated nanoparticles were characterized by a variety of physicochemical techniques, including high-performance liquid chromatography (HPLC), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Adult ticks (Hyalomma dromedarii) (Acari: Ixodidae) were used in this study to evaluate the antiparasitic activity of synthesized nanoparticles and extract. Furthermore, the antifungal activity was evaluated against Aspergillus aculeatus strain N (MW958085), Fuserium oxysporum (MT550034), and Alternaria tenuissiuma (MT550036). In both antiparasitic and antifungal tests, the as-synthesized Ag-olive showed higher inhibition activity than Ag-pure and olive leaf extract. The findings of this research suggest that Ag-olive may be a powerful and eco-friendly antiparasitic and antifungal agent. Ag-pure was also evaluated as a photocatalyst under sunlight for the detoxification of Eri-chrome-black T (EBT), methylene blue (MB), methyl orange (MO), and rhodamine B (RhB).


Anti-Infective Agents , Metal Nanoparticles , Olea , Antifungal Agents/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , Antiparasitic Agents , Plant Extracts/pharmacology , Plant Extracts/chemistry , Sunlight , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
2.
Heliyon ; 10(3): e24815, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38322933

The aqueous onion peel extract (OPE) was used to synthesize silver nanoparticles (Ag-onion), samarium oxide nanoparticles (Sm2O3-onion), and silver/samarium oxide core/shell nanoparticles (Ag@Sm2O3-onion). The produced nanoparticles were characterized by thermal gravimetric analysis (TGA), infrared spectra (FT-IR), absorption spectra (UV-Vis), energy band gap, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), zeta potential, and transmission electron microscopy (TEM). OPE and NPs were tested for the disinfection of some water microbes. XRD analysis exhibited an amorphous structure of samarium oxide in both Sm2O3-onion and Ag@ Sm2O3-onion. The isolated bacteria from the water sample were Bacillus subtilis (OQ073500) and Escherichia coli (MW534699), while the isolated fungi were Alternaria brassicae (MZ266540), Aspergillus flavus (MT550030), Aspergillus penicillioides (MW957971), Pythium ultimum (MW830915), Verticillium dahlia (MW830379), Fusarium acuminatum (MZ266538), Candida albicans (MW534712), and Candida parapsilosis (MW960416). High levels of antimicrobial activity were seen in both the nanoparticles and the aqueous onion peel extract. Based on experimental results, Ag@Sm2O3 demonstrated the highest activity as an effective disinfectant, indicating the effectiveness of the modification process.

3.
Nanomaterials (Basel) ; 14(3)2024 Jan 31.
Article En | MEDLINE | ID: mdl-38334561

The purification and densification of wastewater play an important role in water recycling, especially if the materials used in water recycling are other types of recycled waste. Therefore, considering this view in this study, the biosynthesis of silver-decorated chromium oxide nanoparticles utilizing a wasted Allium sativum (garlic) peel extract is investigated. The aqueous extract of garlic peel (GPE) was treated with silver nitrate, chromium nitrate, and a mixture of silver nitrate and chromium nitrate to synthesize silver nanoparticles (Ag-garlic), chromium oxide nanoparticles (Cr2O3-garlic), and silver-decorated chromium oxide nanoparticles (Ag@Cr2O3-garlic), respectively. The synthesized nanoparticles were elucidated via thermal gravimetric analysis (TGA), infrared spectra (FT-IR), absorption spectra (UV-Vis), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Antimicrobial activity studies were conducted against waterborne germs, bacterial strains (Bacillus subtilis, Enterococcus faecium, Escherichia coli, and Pseudomonas aeruginosa), and fungal strains (Alternaria porri, Aspergillus flavus, Aspergillus niger, Fuserium oxysporum, and Trichoderma longibrachiatum) and showed significant levels of antimicrobial activity. The results revealed that Ag@Cr2O3 significantly improved antimicrobial activity due to their synergistic effect. The photocatalytic activity of nanoparticles was assessed using Rhodamine B dye (5 ppm) under solar irradiation. Cr2O3-garlic exhibited the best activity as a photocatalyst among the studied nanoparticles, with 97.5% degradation efficiency under optimal conditions.

4.
Int J Biol Macromol ; 263(Pt 2): 129989, 2024 Apr.
Article En | MEDLINE | ID: mdl-38354916

In this study, the synthesis and experimental theoretical evaluation of a new chitosan/alginate/hydrozyapatite nanocomposite doped with Mn2 and Fe2O3 for Cr removal was reported. The physicochemical properties of the obtained materials were analyzed using the following methods: SEM-EDX, XRD, FTIR, XPS, pH drift measurements, and thermal analysis. The adsorption properties were estimated based on equilibrium and adsorption kinetics measurements. The Langmuir, Freundlich and Temkin isotherms were applied to analyze the equilibrium data. The thermodynamic analysis of adsorption isotherms was performed. A number of equations and kinetic models were used to describe the adsorption rate data, including pseudo-first (PFOE) and pseudo-second (PSOE) order kinetic equations. The obtained test results show that the synthesized biomaterial, compared to pure chitosan, is characterized by greater resistance to high temperatures. Moreover, this biomaterial had excellent adsorption properties. For the adsorption of Cr (VI), the equilibrium state was reached after 120 min, and the sorption capacity was 455.9 mg/g. In addition, DFT calculations and NCI analyses were performed to get more light on the adsorption mechanism of Cr (VI) on the prepared biocomposite.


Chitosan , Nanocomposites , Water Pollutants, Chemical , Water Purification , Oxides , Wastewater , Chitosan/chemistry , Chromium/chemistry , Adsorption , Alginates/chemistry , Ferric Compounds/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Kinetics , Biocompatible Materials , Nanocomposites/chemistry , Hydrogen-Ion Concentration
5.
Int J Nanomedicine ; 19: 1469-1485, 2024.
Article En | MEDLINE | ID: mdl-38380146

Background: Nowadays, recycling agricultural waste is of the utmost importance in the world for the production of valuable bioactive compounds and environmental protection. Olive leaf bioactive compounds have a significant potential impact on the pharmaceutical industry. These compounds possess remarkable biological characteristics, including antimicrobial, antiviral, anti-inflammatory, hypoglycemic, and antioxidant properties. Methods: The present study demonstrates a green synthetic approach for the fabrication of nickel oxide nanoparticles (NiO-olive) using aqueous wasted olive leaf extract. Calcination of NiO-olive at 500°C led to the fabrication of pure NiO nanoparticles (NiO-pure). Different techniques, such as thermal gravimetric analysis (TGA), Fourier-transform infrared spectra (FTIR), ultraviolet-visible spectra (UV-Vis), X-ray diffraction (XRD), scanning electron microscopy (SEM) fitted with energy-dispersive X-ray analysis (EDX), and transmission electron microscopy (TEM), were used to characterize both NiO-olive and NiO-pure. The extract and nanoparticles were assessed for antiparasitic activity against adult ticks (Hyalomma dromedarii) and antimicrobial activity against Bacillus cereus, Pseudomonas aeruginosa, Aspergillus niger, and Candida albicans. Results: From XRD, the crystal sizes of NiO-olive and NiO-pure were 32.94 nm and 13.85 nm, respectively. TGA, FTIR, and EDX showed the presence of olive organic residues in NiO-olive and their absence in NiO-pure. SEM and TEM showed an asymmetrical structure of NiO-olive and a regular, semi-spherical structure of NiO-pure. UV-Vis spectra showed surface plasmon resonance of NPs. Antiparasitic activity showed the highest mortality rate of 95% observed at a concentration of 0.06 mg/mL after four days of incubation. The antimicrobial activity showed the largest inhibition zone diameter of 33 ± 0.2 mm against the Candida albicans strain. Conclusion: Nanoparticles of NiO-olive outperformed nanoparticles of NiO-pure and olive leaf extract in both antiparasitic and antimicrobial tests. These findings imply that NiO-olive may be widely used as an eco-friendly and effective antiparasitic and disinfection of sewage.


Anti-Infective Agents , Metal Nanoparticles , Olea , Antiparasitic Agents , Metal Nanoparticles/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
6.
Mikrochim Acta ; 190(11): 434, 2023 10 12.
Article En | MEDLINE | ID: mdl-37821740

An ultrasensitive capacitance-based biosensor has been developed capable of detecting the kanamycin (KAN) antibiotic at sub-femtomolar levels. The biosensor was constructed using a potential-pulse-assisted method, allowing for the layer-by-layer deposition of a melanin-like polymeric film (MLPF) on an electrode surface modified with gold nanoparticles (AuNPs). The MLPF was formed through the electrochemical polymerization of dopamine and the specific kanamycin aptamer. By optimizing the operating parameters, we achieved a label-free detection of kanamycin by monitoring the variation of pseudocapacitive properties of the MLPF-modified electrode using electrochemical impedance spectroscopy. The developed biosensor demonstrated a wide linear response ranging from 1 fM to 100 pM, with a remarkable limit of detection of 0.3 fM (S/N = 3) for kanamycin. Furthermore, the biosensor was successfully applied to detect kanamycin in milk samples, exhibiting good recovery. These findings highlight the promising potential of the aptasensor for determination of antibiotic residues and ensuring food safety. In conclusion, our ultrasensitive capacitance-based biosensor provides a reliable and efficient method for detecting trace amounts of kanamycin in dairy products. This technology can contribute to safeguarding consumer health and maintaining high food safety standards.


Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Kanamycin , Gold/chemistry , Aptamers, Nucleotide/chemistry , Metal Nanoparticles/chemistry , Oxidation-Reduction , Anti-Bacterial Agents , Electrodes , Biosensing Techniques/methods
7.
Materials (Basel) ; 16(9)2023 Apr 23.
Article En | MEDLINE | ID: mdl-37176198

Functional materials have long been studied for a variety of environmental applications, resource rescue, and many other conceivable applications. The present study reports on the synthesis of bismuth vanadate (BiVO4) integrated polyaniline (PANI) using the hydrothermal method. The topology of BiVO4 decked PANI catalysts was investigated by SEM and TEM. XRD, EDX, FT-IR, and antibacterial testing were used to examine the physicochemical and antibacterial properties of the samples, respectively. Microscopic images revealed that BiVO4@PANI are comprised of BiVO4 hollow cages made up of nanobeads that are uniformly dispersed across PANI tubes. The PL results confirm that the composite has the lowest electron-hole recombination compared to others samples. BiVO4@PANI composite photocatalysts demonstrated the maximum degradation efficiency compared to pure BiVO4 and PANI for rhodamine B dye. The probable antimicrobial and photocatalytic mechanisms of the BiVO4@PANI photocatalyst were proposed. The enhanced antibacterial and photocatalytic activity could be attributed to the high surface area and combined impact of PANI and BiVO4, which promoted the migration efficiency of photo-generated electron holes. These findings open up ways for the potential use of BiVO4@PANI in industries, environmental remediation, pharmaceutical and medical sectors. Nevertheless, biocompatibility for human tissues should be thoroughly examined to lead to future improvements in photocatalytic performance and increase antibacterial efficacy.

...